336 research outputs found

    Hot nuclear matter with dilatons

    Get PDF
    We study hot nuclear matter in a model based on nucleon interactions deriving from the exchange of scalar and vector mesons. The main new feature of our work is the treatment of the scale breaking of quantum chromodynamics through the introduction of a dilaton field. Although the dilaton effects are quite small quantitatively, they affect the high-temperature phase transition appreciably. We find that inclusion of the dilaton leads to a metastable high-density state at zero pressure, similar to that found by Glendenning who considered instead the admixture of higher baryon resonances.Comment: 10 pages, LaTeX with equation.sty (optional) and epsfig.sty, 11 figures packed with uufiles. Final, published version (small changes from original preprint

    Influence of build orientation on static and axial fatigue properties of maraging steel specimens produced by additive manufacturing

    Get PDF
    Abstract Additive manufacturing involves a layer-by-layer build-up of mechanical parts and it is a manufacturing technology that can be adopted with different engineering metal materials like steels, aluminium and titanium alloys. Aim of the present investigation is to analyse the influence of the build orientation on static and axial fatigue properties of maraging steel specimens manufactured by Direct Metal Laser Sintering (DMLS) of EOS metal powders. After manufacturing, some of the specimens were subjected to age hardening heat treatment (490 °C for 6 hours, followed by air cooling). Both heat treated and as-manufactured specimens have been built at 0° as well as at 90° orientation with respect to the specimen's axis. Analyses of the crack initiation point are performed in order to investigate the fatigue failure mechanisms. Finally, the fatigue strength of the additively manufactured specimens was compared with that exhibited by vacuum melted specimens of the same steel reported in literature

    Effective hadron masses and couplings in nuclear matter and incompressibility

    Get PDF
    The role of effective hadron masses and effective couplings in nuclear matter is studied using a generalized effective Lagrangian for sigma-omega model. A simple relation among the effective masses, the effective couplings and the incompressibility K is derived. Using the relation, it is found that the effective repulsive and the effective attractive forces are almost canceled to each other at the normal density. Inversely, if this cancellation is almost complete, K should be 250-350MeV.Comment: 13 pages of text, 16 figure

    Finite Nuclei in a Relativistic Mean-Field Model with Derivative Couplings

    Full text link
    We study finite nuclei, at the mean-field level, using the Zimanyi-Moskowski model and one of its variations (the ZM3 model). We calculate energy levels and ground-state properties in nuclei where the mean-field approach is reliable. The role played by the spin-orbit potential in sorting out mean-field model descriptions is emphasized.Comment: 17 pages, 9 figures, 30 kbytes. Uses EPSF.TEX. To appear in Zeit. f. Phys. A (Hadrons and Nuclei

    Anatomy of a microearthquake sequence on an active normal fault

    Get PDF
    The analysis of similar earthquakes, such as events in a seismic sequence, is an effective tool with which to monitor and study source processes and to understand the mechanical and dynamic states of active fault systems. We are observing seismicity that is primarily concentrated in very limited regions along the 1980 Irpinia earthquake fault zone in Southern Italy, which is a complex system characterised by extensional stress regime. These zones of weakness produce repeated earthquakes and swarm-like microearthquake sequences, which are concentrated in a few specific zones of the fault system. In this study, we focused on a sequence that occurred along the main fault segment of the 1980 Irpinia earthquake to understand its characteristics and its relation to the loading-unloading mechanisms of the fault system

    Derivative-Coupling Models and the Nuclear-Matter Equation of State

    Get PDF
    The equation of state of saturated nuclear matter is derived using two different derivative-coupling Lagrangians. We show that both descriptions are equivalent and can be obtained from the sigma-omega model through an appropriate rescaling of the coupling constants. We introduce generalized forms of this rescaling to study the correlations amongst observables in infinite nuclear matter, in particular, the compressibility and the effective nucleon mass.Comment: 16 pages, 6 figures, 36 kbytes. To appear in Zeit. f. Phys. A (Hadrons and Nuclei

    Segmentation of Fault Networks Determined from Spatial Clustering of Earthquakes

    Full text link
    We present a new method of data clustering applied to earthquake catalogs, with the goal of reconstructing the seismically active part of fault networks. We first use an original method to separate clustered events from uncorrelated seismicity using the distribution of volumes of tetrahedra defined by closest neighbor events in the original and randomized seismic catalogs. The spatial disorder of the complex geometry of fault networks is then taken into account by defining faults as probabilistic anisotropic kernels, whose structures are motivated by properties of discontinuous tectonic deformation and previous empirical observations of the geometry of faults and of earthquake clusters at many spatial and temporal scales. Combining this a priori knowledge with information theoretical arguments, we propose the Gaussian mixture approach implemented in an Expectation-Maximization (EM) procedure. A cross-validation scheme is then used and allows the determination of the number of kernels that should be used to provide an optimal data clustering of the catalog. This three-steps approach is applied to a high quality relocated catalog of the seismicity following the 1986 Mount Lewis (Ml=5.7M_l=5.7) event in California and reveals that events cluster along planar patches of about 2 km2^2, i.e. comparable to the size of the main event. The finite thickness of those clusters (about 290 m) suggests that events do not occur on well-defined euclidean fault core surfaces, but rather that the damage zone surrounding faults may be seismically active at depth. Finally, we propose a connection between our methodology and multi-scale spatial analysis, based on the derivation of spatial fractal dimension of about 1.8 for the set of hypocenters in the Mnt Lewis area, consistent with recent observations on relocated catalogs

    Structure of the Vacuum in Nuclear Matter - A Nonperturbative Approach

    Get PDF
    We compute the vacuum polarisation correction to the binding energy of nuclear matter in the Walecka model using a nonperturbative approach. We first study such a contribution as arising from a ground state structure with baryon-antibaryon condensates. This yields the same results as obtained through the relativistic Hartree approximation of summing tadpole diagrams for the baryon propagator. Such a vacuum is then generalized to include quantum effects from meson fields through scalar-meson condensates. The method is applied to study properties of nuclear matter and leads to a softer equation of state giving a lower value of the incompressibility than would be reached without quantum effects. The density dependent effective sigma mass is also calculated including such vacuum polarisation effects.Comment: 26 pages including 5 eps files, uses revtex style; PACS number: 21.65.+f,21.30.+

    Phase Transitions in Warm, Asymmetric Nuclear Matter

    Get PDF
    A relativistic mean-field model of nuclear matter with arbitrary proton fraction is studied at finite temperature. An analysis is performed of the liquid-gas phase transition in a system with two conserved charges (baryon number and isospin) using the stability conditions on the free energy, the conservation laws, and Gibbs' criteria for phase equilibrium. For a binary system with two phases, the coexistence surface (binodal) is two-dimensional. The Maxwell construction through the phase-separation region is discussed, and it is shown that the stable configuration can be determined uniquely at every density. Moreover, because of the greater dimensionality of the binodal surface, the liquid-gas phase transition is continuous (second order by Ehrenfest's definition), rather than discontinuous (first order), as in familiar one-component systems. Using a mean-field equation of state calibrated to the properties of nuclear matter and finite nuclei, various phase-separation scenarios are considered. The model is then applied to the liquid-gas phase transition that may occur in the warm, dilute matter produced in energetic heavy-ion collisions. In asymmetric matter, instabilities that produce a liquid-gas phase separation arise from fluctuations in the proton concentration (chemical instability), rather than from fluctuations in the baryon density (mechanical instability).Comment: Postscript file, 50 pages including 23 figure
    • …
    corecore